
TRUSTED BY GLOBAL ENTERPRISES

Build and Deploy 
Flawless Frontends with 
Automated Visual Testing



Build and Deploy Flawless Frontends
with Automated Visual Testing
It takes only 50 milliseconds (that's 0.05 seconds) to decide if users love your website and stay or give it a
pass and leave. 

More people use smartphones and tablets than desktops, making mobile usage dominant. To succeed,
apps and websites must offer top-notch experiences on diverse mobile devices.

The stats don’t lie.

Inconsistencies across browsers, devices, and screen resolutions create a fragmented user experience with
visual defects, layout issues, and broken elements. It may also lead to slow loading times and increased
user bounce rates. This frustration diminishes engagement and conversion opportunities.

So what do teams do to address these visual issues? They fall back to what they know: throwing more
humans, engineering time, and inadequate tooling at the problem.

They face three main challenges:

Manual testing, whether conducted internally or outsourced, poses challenges due to potential human
errors. 

Testers may overlook issues or misinterpret visual cues, leading to inaccurate results, and impacting
overall test coverage and product reliability. 

It can also be time-consuming, especially for complex apps or websites, requiring manual checks for
each page or screen. 

Another drawback is the inconsistency in evaluation, with different testers, yielding varying results. 

61% of users are unlikely to return to a site on mobile if they had trouble
accessing it and 40% visit a competitor’s site instead. 

53% of mobile website visits are abandoned if pages take longer than 3
seconds to load. 

58% of all multi-device purchases use mobile to close the sale.
         Source: MerchantSavvy

         Source: McKinsey

         Source: Google

© 2023 BrowserStack. All rights reserved. 02

1. Manual testing is time-consuming and inconsistent

https://www.tandfonline.com/doi/abs/10.1080/01449290500330448
https://www.merchantsavvy.co.uk/mobile-ecommerce-statistics/
https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/why-marketers-should-keep-sending-you-emails
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/what-users-want-most-from-mobile-sites-today/


© 2023 BrowserStack. All rights reserved. 03

RCA (root cause analysis) also takes a hit, delaying the testing process and resolution of critical defects. 
Lastly, the cost of manual Visual Testing can be substantial, particularly with a large number of testers
required for comprehensive testing.

Functional testing, though incredibly important, is simply not designed to test applications from a visual
standpoint. Instead of looking at the visuals, they only test the abstractions underneath. Trying to bolt on
assertions of visual aspects doesn’t work and creates fragile and unmaintainable test suites.

Automated Visual Testing is similar to functional testing in that it’s designed to be an automated process
that runs alongside code reviews. Unlike functional testing, however, visual tests don’t pass or fail.
Automated Visual Testing simply detects visual changes and provides a review process to determine
whether or not the changes are correct.

Open-source libraries have cropped up over the years, providing simple snapshotting and image diffing
capabilities, but lack the infrastructure and workflow necessary to enable continuous visual coverage.
They can be difficult to integrate with your existing testing infrastructure, so automating the process of
Visual Testing can be challenging. You end up doing manual testing, which can be time-consuming and
error-prone.

Open-source libraries are often unmaintained. They may not be updated with new features or bug fixes
quickly. They are also often narrow, supporting a limited number of browsers, devices, or screen
resolutions.

The most pressing challenges that keep frontend engineers on their toes

In a Visual Testing survey conducted, we asked frontend engineers what are their most difficult challenges
at work. These were the responses:

2. Functional tests are not meant to assess visual aspects

3. Open-source libraries are unmaintained and narrow

Maintaining Cross-browser compatibility: 38% of surveyed want to
ensure websites or apps work smoothly across multiple browsers.

Manual UI consistency checks: 30% of respondents said maintaining a
consistent user interface across different screens, resolutions, and
devices is a challenge.

Writing and managing tests: 16% voted that designing comprehensive
test suites, crafting solid test cases, and keeping track of test coverage is
a challenge.

Refactoring challenges and fear of breaking: 16% want to find safe
and effective ways to refactor code, ensuring that existing functionality
remains intact while bringing in much-needed improvements.



© 2023 BrowserStack. All rights reserved. 04

As technology and tooling have evolved, automated visual testing has emerged as the most scalable and
holistic approach to testing visual elements of frontends. From day-to-day operations to specific use cases,
automated visual testing helps teams save time and get more confidence in their UI.

In our survey, we asked which benefits of automated visual testing are the most important. These are the
top four which were highlighted:

Automated Visual Testing provides continuous visual feedback regardless of the context of the change or
the “correctness” of the change. In situations where your UI shouldn’t change (like deleting CSS,
refactoring CSS, or upgrading dependencies), Automated Visual Testing gives you confidence that your
entire UI has remained stable. That built-in coverage not only extends to the breadth of your UI—from your
most critical flows down to your 404 page—but also to the combinations of those pages across browsers
and screen sizes. 

Visual regression tests are vital for preventing visual bugs from slipping into production and disrupting
user experiences. While functional and manual testing catch bugs, they often don’t discover bugs,
especially visual discrepancies. 

Let’s go back to our survey. We asked people how often they perform regression testing on their native
apps and websites.

Uncover Visual Defects with Automated
Visual Testing

1. Ensuring UI/UX Consistency across Devices and Screens

2. Navigating the Blind Spots in QA with Visual Regression Testing

Frequency of Visual
Regression Testing

Website Apps

Daily 30% 26%

Twice a Week 16% 21%

Once a Week 27% 23%

Less Frequently 27% 30%



1 - 500: 37%

500 - 1000: 18% We don't run them: 32%

> 1000: 13%

How many visual regression tests do you run?

Overall the survey stresses the adage of “test early, test often”. Infrequent testing creates an environment
where bugs and defects can accumulate unnoticed, only to surface later when they're more challenging
and costly to address.

Automated Visual Testing fills the gap by providing a systematic approach to ensuring consistent and
frequent regression testing. By comparing screenshots across different devices and resolutions, QA teams
can meticulously compare UI elements and screens against established baselines, detecting even the
slightest deviations that could indicate bugs or unintended changes.

© 2023 BrowserStack. All rights reserved. 05

A striking trend that emerges from the survey is the substantial percentage of respondents who engage in
regression testing less frequently—30% for native apps and 27% for websites. This is concerning, as it
highlights a potential blind spot in the QA process.

When questioned on the number of visual regression tests run, an alarming 32% admitted to not running
any visual regression tests at all, which can potentially result in a deterioration of user experience and
functionality over time.

Automated Visual Testing scales with a level of precision not feasible with the human eye, at a faster rate
than the brain can work, and at a fraction of the cost. It has virtually no limitations to scale and has a low
incremental cost that doesn’t increase exponentially with complexity.

The time-saving and confidence-boosting benefits of Automated Visual Testing also extend to teammates
other than developers. For designers verifying the implementation of designs, product managers staying in
the loop, or product marketers grabbing updated UI screenshots, Automated Visual Testing provides
immense value to cross-functional product teams.

When making code changes, it’s often a fear of the unknown that causes the most stress—whether it’s fear
of breaking something or uncertainty about the full scope of design implementation. That risk, and the
inability to mitigate it, is why teams spend time and resources manually looking for visual bugs. It’s also
why teams end up trying to write functional tests to prevent visual regressions. 

Visual Testing automates that work, empowering you to merge and deploy with full confidence that your
app will look exactly as it should across browsers and screen sizes.

3. Increased Productivity and Scalability for QA Teams

4. Getting Complete Code Refactoring Confidence

https://www.jot.fm/issues/issue_2007_05/column1.pdf


© 2023 BrowserStack. All rights reserved. 06

In the journey towards comprehensive test automation, teams often prioritize functional test automation
before automated visual testing. A more effective strategy calls for reversing this sequence and
emphasizing automated visual tests as a primary focus during the automation ramp-up phase.

A Shift in Mindset: Visual - First Automation
is the Way Forward

Aspect Visual-First Automation Functional-First Automation

Code Efficiency
Emphasizes writing less code for
functional validation.

Requires eliminating all codes related
to visual validation at the time of
implementing automated visual
testing.

Consistency cross-device consistency in the visual
output.

Guarantees cross-browser and Might succeed on one browser/device,
but lacks assurance of consistent visual
output across different platforms.

Collaboration
Enhances collaboration through user-
friendly screenshots, easily understood
by non-technical team members.

Being technical, it may lead to
discrepancies in understanding among
team members.

Test Coverage
Provides broad coverage of application
appearance with relatively fewer test
cases.

Demands more test cases for
functional coverage, with requirements
growing exponentially for a broader
scope.

Bug Visibility
Visual bugs are visible to 100% of users,
allowing for immediate feedback.

Functional bugs are only seen by users
who encounter the specific functional
issue.



Teams should prioritize and invest in maturing their testing operations if they want to generate the kinds
of results that can make a real difference to their business. Generally, mature teams automate more tests,
ensuring broader coverage and quicker releases, ultimately boosting customer satisfaction and revenue.
Adopting a Visual-First approach, as opposed to a functional-first approach, offers advantages throughout
the test maturity journey and helps you achieve test maturity faster.

In the early stages (teams with 10-20% automation), it simplifies automation as you have to write much
less code. For intermediate teams (50-80% automation), it seamlessly integrates into existing tests,
reducing script complexity. In mature teams (>80% automation), it's a game-changer, catching visual bugs
early in CI/CD pipelines and enhancing collaboration for high-quality product delivery.

Why use Visual-First Automation

Automated Visual Testing for Different
Test Maturity Stages 

Quicker test script
creation compared
to complex
functional tests.
Can start automation
with a few lines of
code

0-30% automation
coverage
New to automation

30-60% automation
coverage Automation
Intermediate

More than 60%
automation coverage
Automation Mature

Avoid test script
debt
Reduce scripting
complexity

Reduce codebase
complexity
Detect issues before
they propagate
through the CI/CD
pipeline
Collaborate better,
and ship high-
quality products.

© 2023 BrowserStack.All rights reserved. 07

https://browserstack.wpenginepowered.com/wp-content/uploads/2023/03/Test-Maturity-Whitepaper_March2023.pdf


"App Percy has recently unlocked an entirely new avenue of testing for mobile
native apps as well with visual comparisons. Functional testing is still needed of
course, but it doesnt cover subtle UI differences that could be bugs."

James V. Source:  G2

Introducing BrowserStack Percy and 
App Percy

Eliminating the need for manual code changes in your test scripts, you can easily
incorporate the BrowserStack SDK into your existing test scripts, provide authentication
details, and gain instant access to Percy and App Percy.

With Percy and App Percy, you can experience the power of running over 90% of builds
in under 2 minutes. Leveraging DOM Snapshotting and advanced parallelization, these
platforms ensure faster releases and pixel-perfect pages. The utilization of advanced
computer vision algorithms facilitates the execution of builds on over 20,000 real
devices across 19 data centers, boasting a 99.9% uptime guarantee.

Team collaboration becomes more accessible with Percy and App Percy. These platforms
group visual changes and filter out noisy elements for faster and clearer reviews.
Automatic status updates in pull requests keep the entire team informed about detected
visual changes and updates throughout every visual review.

Zero Code Change Integration

Rapid Build Execution

Efficient Collaboration

BrowserStack's Automated Visual Testing platforms, Percy and App Percy, offer efficient and
comprehensive solutions for handling the end-to-end Visual Testing process. With these platforms,
developers gain full visual confidence, enabling them to build and maintain visually-perfect products more
productively.

Here’s how Percy and App Percy can transform your Visual Testing:

© 2023 BrowserStack.All rights reserved. 08

https://www.g2.com/products/browserstack/reviews/browserstack-review-8180983


Get Started Free Trial

© 2023 BrowserStack.All rights reserved - The Most Reliable Mobile App & Cross Browser Testing Company

Try Percy and App Percy Today!

https://www.browserstack.com/percy
https://www.browserstack.com/percy
https://percy.io/dashboard

