
Test Observability
Improve test stability and reliability

TRUSTED BY GLOBAL ENTERPRISES

In today's digital-first world, organizations are constantly adapting to ever-evolving customer demands.
To win customer loyalty, releasing bug-free code more frequently is paramount. Teams often turn to
continuous testing and test automation to achieve this but face significant challenges in maintaining the
health, reliability, and stability of their test suites.

Take flaky tests, for instance. In a recent survey, 59% of software developers reported regularly
encountering flaky tests. Among the 91% of developers who dealt with flaky tests at least a few times a
year, more than 75% viewed them as a moderate-serious category issue. Moreover, increasing test
automation leads to an unorganized mess of test result data scattered across platforms, making manual
analysis a cumbersome task.

Teams struggle with differentiating false failures from genuine ones, rummaging through multiple log
sources to determine the reasons behind failures and anomalies. This process often involves switching
between multiple tools to file bugs, create analysis-ready reports, and manually track data for calculating
QA metrics, leading to errors and delays that cost valuable time and resources.

Teams grappling with test suite quality issues like this need a comprehensive solution to improve the
reliability of their test suites for fast and accurate run verification.

In this whitepaper, we delve into the importance of BrowserStack Test Observability for Dev and QA teams.
We'll show you how it can help ensure quality test suites, enhance CI stability, and boost productivity to
accelerate your time to market.

Executive Summary

Challenges of evolving testing needs
Evolving testing needs could be jeopardizing speed, productivity, and visibility

As test automation matures, test suites grow exponentially. With increasing test automation, teams often
end up drowning in a jumble of unorganized test result data scattered across different platforms.
Manually making sense of chaotic test data is a nightmare. It's hard to find critical failures, debug them,
and identify areas for improvement in test suites.

Let’s look at the challenges in detail:

© 2023 BrowserStack. All rights reserved. 02

https://dl.acm.org/doi/fullHtml/10.1145/3476105#sec-5
https://dl.acm.org/doi/fullHtml/10.1145/3476105#sec-5

© 2023 BrowserStack. All rights reserved. 03

Manual effort

Teams invest time and effort in repeatedly identifying and isolating flaky, always failing,
tests failing due to environment issues, etc., which delays the identification of genuine test
failures. Imagine the frustration of having to manually debug and rerun tests, relying solely
on intuition and guesswork to figure out if a test is flaky or failed due to a genuine error. The
process is tiring, prone to human error, and non-scalable.

Manual methods almost always slow things down, making releases less frequent and
increasing the lead time for any changes. And that's a big roadblock when you're aiming for
full-fledged Continuous Delivery. Besides, automation engineers have to spend time on run
verification instead of writing newer automation scenarios. This results in the QA team
getting almost always stretched.

Wasted time and effort

Bottlenecked deployment and increased lead time

Regression time goes up 2-3x due to re-runs. It also slows down development because
teams need to wait for deterministic results.

Unreliable results

Delays

Inefficiencies

Each new re-run contributes to additional resource time, effort, and cost wastage.

Multiple people in the same team often analyze the test failure root cause over and over
again. It's a recipe for inefficiency. Plus, the lead time to make changes increases
significantly.

Resource wastage

A lot of manual effort is required to improve the signal-to-noise ratio, leading to:

Teams have to re-run the entire test suite multiple times for deterministic results, leading to:

© 2023 BrowserStack. All rights reserved. 04

Logs are often spread across multiple tools in different formats. Teams must correlate
these with internal playbooks, if documented, or rely on memory to determine the cause
of test failure.

Teams get stuck in a never-ending loop of manually categorizing failures. The analysis takes
up a lot of time, slowing down the debugging process.

All the extra time and effort spent in RCA and debugging prolongs Dev-QA and
deployment cycles and increases time to market.

Frustrating RCA

Endless debugging

Longer time to market

Disparate data streams

The lack of metrics and data makes it difficult for teams to pinpoint gaps in test
coverage, stability, and performance over time.

When visibility is limited, it's hard to determine which areas of the test suite need
improvement and in what priority.

Gaps in testing

Ineffective roadmap planning

Without means to measure the current health of test suites, teams cannot track the progress,
efficiency, and effectiveness of QA over time.

Blindspots and gaps

Unrealible progress tracking

It is cumbersome for teams to analyze and correlate different logs, leading to:

Teams lack visibility and can’t measure the health of their test suites, leading to:

When teams can’t deterministically tell why and which tests are flaky, they start to doubt
the effectiveness of testing and skip tests. Bugs creep into production as a result,
lowering the organization’s confidence in QA and impeding efforts for CI/CD
implementation.

© 2023 BrowserStack. All rights reserved. 05

Teams often unintentionally ignore flaky tests, always-failing tests, slow tests, etc., to keep
up with release cycles. The flaky tests, as a result, remain in the test suite for a long time.

Flaky tests return nondeterministic results. When teams are unable to trust test results,
developers can’t trust their code. They turn to manual testing to gain confidence before
releasing, which slows down the entire cycle and increases the chances of bugs in
production.

Ignored flaky tests

Loss of trust

Lowered confidence in QA

Flaky delivery
Teams struggle to identify flaky tests and the root cause, leading to:

Introducing BrowserStack Test Observability
BrowserStack Test Observability was created especially for engineering teams looking to optimize and
ramp up their testing operations with data. It helps improve the quality, stability, and performance of your
test suite over time with rich insights. By highlighting persistent issues such as flakiness and always failing
tests in your test suite, it helps to increase the quality of testing and, therefore, the quality of the end
product. It also simplifies inefficient workflows that users perform many times a day, massively increasing
efficiency and reducing frustration.

If your team is facing the following challenges, BrowserStack Test Observability can help!

You have tests that fail sometimes but pass other times, and you can't figure
out why.

It takes a long time to figure out why a test is failing, so you can't fix
it quickly.

Flaky tests

Slow root cause
analysis

You can't see what's going on with your tests, so you don't know which ones are
failing, why they're failing, or how often they're failing.

Lack of visibility

"The most helpful feature of BrowserStack is the Test Observality tool.
We rely on the data and results shared through this tool every morning
during our test analysis."

Curtis M. Source: G2

© 2023 BrowserStack. All rights reserved. 06

57% of failing builds failed due to test job failures consisting
of flaky and failing automated tests

Source: Slack Engineering Blog

Flaky tests led to ~$312K wasted time per month

Source: GitLab Engineering Blog

Transform your testing operations with BrowserStack Test Observability, so your team can focus on
writing more tests instead of debugging the ones that failed.

We’ve simplified root cause analysis workflows and integrated with bug
reporting tools and CI/CD platforms to help save time. Root cause analysis is
now 10x faster than manual methods.

View rich, historical data on testing trends in your team. Leverage these insights
to ship higher-quality products to market faster. Understand test suite health,
identify issues, and optimize tests for continuous improvement.

Optimize slow,
monotonous
workflows

Do more with rich
test suite insights

We bring every kind of log into a single dashboard, helping you catch every bug.
Our solution filters irrelevant tests, so you can focus on genuine test failures
that need attention.

Debug & optimize
your tests with
surgical precision

https://www.g2.com/products/browserstack/reviews/browserstack-review-8180983
https://slack.engineering/handling-flaky-tests-at-scale-auto-detection-suppression/
https://about.gitlab.com/handbook/engineering/quality/engineering-productivity/flaky-tests/

© 2023 BrowserStack. All rights reserved. 07

Enhance every stage of your test automation journey with
BrowserStack Test Observability
In our previous whitepaper on Turn Testing into a Business Advantage, we defined five stages of test
maturity:

BrowserStack Test Observability is a great solution for teams that are New to Automation - doing either
manual testing or adopting automation - as they can ‘do it right the first time' and write flakiness-free test
suites to avoid the problem altogether. They spend less time debugging failed test cases and can use the
time saved to write new automation scenarios, thereby making further progress in quality improvement.

But for teams with mature test automation, it is an absolute game-changer and a must-have for improving
the quality of QA like never before.

Automation Intermediate teams that are ramping automation have a significant number of tests that run
on a predefined schedule. By having the capability to quickly debug the root cause of failures, teams can
save a lot of time and use it instead to write new test scenarios and increase automation coverage. Teams
also get visibility into parts of the test suite that are prone to problems and fix them quickly.

Automation Mature teams that are almost automated or fully automated, on the other hand, have a huge
number of automation scenarios that are complex and intertwined. BrowserStack Test Observability can
help teams quickly pinpoint the source of failure and identify other parts of the test suite that might be
impacted. It also helps large teams collaborate effectively and resolve issues faster, improving time to
release and product quality.

Regardless of their automation maturity stage, BrowserStack Test Observability helps teams significantly
reduce engineering hours spent on run verification and expedite the resolution of critical issues and flaky
tests. As a result, fewer bugs creep into production, ensuring a more robust and reliable software
development process.

Manual

Adopting Automation

Ramping Automation

Almost Automated

Fully Automated

https://browserstack.wpenginepowered.com/wp-content/uploads/2023/03/Test-Maturity-Whitepaper_March2023.pdf

© 2023 BrowserStack.All rights reserved. 08

Need of Observability

Benefit of Observability

Less flakiness in test
suites right from the Start

0-30% automation
Coverage

New to automation

30-60% automation
Coverage

Automation intermediate

60% and above
automation Coverage

Automation mature

Debug root Cause
quickly
Identify parts of test
suites that are
problem-prone

Pinpoint source of
failures and identify
other parts of test
suite at risk
collaborate better,
ship faster
Use the freed-up time
to write newer tests,
thereby improving
product quality &
team productivity

Made for every stage of your test automation journey

Type of QA team Test Maturity Stage Why use BrowserStack Test Observability

Teams New to
Automation

Manual testing
coverage: ~90%
Test automation
coverage: ~10%

Automatically detect flaky tests while writing test
automation suites
Create a robust foundation with reliable, stable
tests and deterministic results
Spend less time debugging failed tests and more
time writing new test scenarios to expedite test
automation maturity

Automation
Intermediate
Teams

Manual testing
coverage: ~60%
Test automation
coverage: ~40%

Get all the relevant logs in a single view for better
decision-making
Precisely pinpoint root causes to resolve issues
quickly
Scale detection of flaky tests to eliminate
flakiness from test suites
Ensure stable, reliable test suites to stop bugs
from creeping into production
Boost productivity and reduce time to change
Free up teams from tedious manual work to focus
on writing new scripts to cover more scenarios,
thereby improving release quality

Automation
Mature Teams

Manual testing
coverage: ~30%
Test automaton
coverage: ~70%

Save time and effort by eliminating manual
troubleshooting - up to 10x faster
Cut regression time and get deterministic results
for better planning
Debug tests faster to shorten Dev-QA and
deployment cycles
Track relevant QA metrics such as growth of test
cases, always failing & flaky tests, suite stability,
and device/browser coverage to meausre the
health of test suites over time
Take data-driven prioritization decisions for fixing
tests to maintain trust in test results
Identify gaps in test coverage to improve QA
effectiveness
Eliminate flaky tests to increase confidence in QA
Save time, effort and cost to drive team-wide
efficiency
Improve time to market and product quality

© 2023 BrowserStack.All rights reserved. 09

Get Started Contact Sales

Watch video

Empower your teams with BrowserStack
Test Observability

© 2023 BrowserStack.All rights reserved - The Most Reliable Mobile App & Cross Browser Testing Company

Write better tests and improve your debugging. Reduce defect leakage into production, and
improve your UX.

Save thousands of man-hours and ship to production faster with faster & more stable
test suites.

Build happier teams that avoid slow, repetitive, and frustrating debugging tasks.

Improve Test Reliability

Decrease Deployment Cycle Time and Save Engineering Costs

Improve Developer Experience and Productivity

See BrowserStack Test Observability in Action

Try BrowserStack Test Observability Today!

https://www.browserstack.com/users/sign_up?ref=whitepaper
https://www.browserstack.com/contact?ref=whitepaper
https://www.browserstack.com/docs/test-observability/overview/what-is-test-observability#a-sneak-peek-at-test-observability#ref-whitepaper

